
Angular and
Web
Development

Part 2
SWEN-261k
Introduction to Software
Engineering

Department of Software Engineering
Rochester Institute of Technology

Summary

• Angular is a component-based framework that is used for developing
single page applications employing TypeScript and HTML template
language
• Typescript is a language that compiles to JavaScript. It is strongly typed, object

oriented and compiled language

• HTML (Hypertext Markup Language) is the code that is used to structure a web
page and its content

• CSS (Cascading Style Sheets) is the language we use to style a Web page

• Last class we covered Modules and Components
• Modules are objects that help you to organize dependencies into discrete units

• Components are new elements that will compose the majority of your application’s
structure and logic

Modules vs Components

Module Component

A module is a collection of components, services,
directives, pipes and so on

A component in Angular is a building block of the
Application with an associated template

Denoted by @NgModule Denoted by @Component

An Angular application will contain many modules,
each dedicated to a single purpose

Each component can use other components, which are
declared in the same module. To use components
declared in other modules, they need to be exported
from this module and the module needs to be
imported.
Note: (>= v17 defaults to standalone use
ng new --no-standalone for use of @NgModule)

Angular – What’s next

• Data binding

• Services

• Routing

• Observables

Angular – Data Binding

• Data binding automatically keeps your page up-to-date based on your
application's state. You use data binding to specify things such as the
source of an image, the state of a button, or data for a particular user

• There are four types of data binding available in Angular:
• Event binding - This data binding type is when information flows from the view to

the component when an event is triggered

• Interpolation - Text representing variables in components are placed in between
double curly braces in the template

• Two-way data binding - Two-way binding is a mechanism where data flows both
ways from the component to the view and back

• Property binding - Property binding is a one-way mechanism that lets you set the
property of a view element

Data Binding – Event Binding

• To bind to an event, you use the Angular event binding syntax

• This syntax consists of a target event name within parentheses to the
left of an equal sign, and a quoted template statement to the right

• In the following example, the target event name is click and the
template statement is onSave():

<button (click) = "onSave()">Save</button>

Target
event name

Template
statement

• Template statements are methods or properties that you can use in
your HTML to respond to user events

Data Binding – Interpolation
• Interpolation is used for one-way data binding

• It moves data in one direction from our components to HTML elements

• Angular evaluates the expressions into a string and replaces it in the
original string and updates the view

• Angular uses the {{ }} in the template to denote the interpolation

• Examples:

Data Binding – Two-way Data Binding

• Two-way data binding in Angular will help users to exchange data from
the component to view and from view to the component

• It will help users to establish communication bi-directionally.
• If a property in the component is changed that change flows to the view

• Same way change in view is reflected in the bound property in the component

Input example on HTML

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/button
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/button

Data Binding – Two-way Data Binding

• In Angular, ngModel directive is used for two-way bindings

• It simplifies creating two-way data bindings on form elements like
input elements

Two-way data binding for “name”
element

As you type in a new value for “name”, all
references are immediately updated in
template and component class

Data Binding – Property Binding

• Property binding in Angular helps you set values for properties of HTML
elements or directives

• Use property binding to do things such as toggle button functionality, set
paths programmatically, and share values between components

• Property binding moves a value in one direction, from a component's
property into a target element property

• To bind to an element's property, enclose it in square brackets, [], which
identifies the property as a target property

Target property

Angular – Data Binding Example
• Using Data binding, we can pass data between the component and template

Property binding

Event binding

greet.component.html

greet.component.ts

Two-way data binding

Interpolation

Services
• Angular services are singleton objects that get instantiated only once

during the lifetime of an application

• They contain methods that maintain data throughout the life of an
application, i.e. data does not get refreshed and is available all the time

• The main objective of a service is to organize and share business logic,
models, or data and functions with different components of an
Angular application

• Services are a great way to share information among classes that don't
know each other

Angular Example – Create Service

ng g service log

• Use the Angular CLI to generate a service for a simple logger

New log
method

Angular Example – Service Details

@Injectable() decorator to provide the
metadata that allows Angular to inject
it into a component as a dependency

log.service.ts

• Add a new log() method to log messages to the console

greet.component.ts

The log service is injected
into the greet component

Angular Example – Service Details
ng serve

Using Chrome’s developer tools, we can see
our message logged to the console when the

button is clicked

Routing

• Most applications require the ability to navigate between different pages
during the lifecycle of the application.

• Typically, an application has at least a few basic pages, such as a login
page, home page, user’s account page, and so forth.

• Routing is the term used to describe the capability for the application to
change the content on the page as the user navigates around.

• The Angular router is a core part of the Angular platform

Routing
• In Angular, the best practice is to load and configure the router in a

separate, top-level module that is dedicated to routing and imported by
the root AppModule

• Use the Angular CLI to generate
Note: (>= v17 defaults to standalone use ng new my-app --no-standalone –routing to generate app.module.ts and app-routing.module.ts)

ng generate module app-routing --flat --module=app

Puts the file
in src/app

register it in
the imports array of

the AppModule.

Routing

• In this example, we will create a routes to a home, about and dashboard
page by updating the new app-routing module

app-routing.modules.ts

Import components we want to route to

Each route has 2 properties:
• path – String that matches URL in browser. Maps to a component
• component – the component the router should created when navigating to this route

• import - Register the top-level routes and return the routing module that should
be imported by the root module of the application

• export - exports RouterModule so it will be available throughout the application

Routing
• Our new start page links to other pages

app.component.html

The <router-outlet> tells the router where
to display routed views

Observables

• Observables provide support for passing messages between parts of your
application

• They are used frequently in Angular and are a technique for event
handling, asynchronous programming, and handling multiple values

• For example, consider requesting data from a server via HTTP
• If the content was retrieved synchronously (following the request), the browser

could freeze the UI while it waited for the server's response

• Instead, we want to be notified when when the content is available

Observables

• Observables are declarative—that is, you define a function for publishing
values, but it is not executed until an observer (consumer) subscribes to it

• The subscribed consumer then receives notifications until the function
completes, or until they unsubscribe

Observable
(publisher)

Observer
(consumer)

[data] [data] [data]

subscribes

Observable
(publisher)

Observers
• The Observer has three handles to use the data that it receives:

• next - Required. A handler for each delivered value that’s called zero or more times
after execution starts

• error - Optional. A handler for an error notification. An error halts execution of the
observable instance

• complete - Optional. A handler for the execution-complete notification. Delayed
values can continue to be delivered to the next handler after execution is complete.

Observer
(consumer)

subscribe next

error

complete

lis
te

n

Observables – Simple Example

• In this example, we create a simple Observable that publishes a list of
items that are subscribed to by an Observer

app.component.ts

Observable object

Execute the
observer object

Using Chrome’s developer tools, we can
see our message logged to the console

when the button is clicked

Observables – For your project
• Consider creating an Observable service which will process requests for your e-project

• Initially the service could hold the data for your e-project items until you connect to your back-end API

• Your other components would subscribe to the service for processing requests

• When you connect your service to the back-end, your components do not have to change since
the service will already be processing the requests

Component
(Observer)

Component
(Observer)

Service
(Observable)

Back-end

e-project
(in-memory)

e-project
(store on disk)

HTTP Requests

Response
Routing

• Part 2 of the Hero’s tutorial connects to a temporary in-memory data store

• Additional instructions are provided to connect the service to the back-end APIs similar to what
you will do on your e-project

Angular Activity – Tour of Heroes – Part 2

• Do Activity “Tour of Heroes – Part 2”

• Complete the remaining tutorial

• Upon completion of the tutorial, you have all the necessary components
to build your e-project!

	Slide 1: Angular and Web Development
	Slide 2: Summary
	Slide 3: Modules vs Components
	Slide 5: Angular – What’s next
	Slide 6: Angular – Data Binding
	Slide 7: Data Binding – Event Binding
	Slide 8: Data Binding – Interpolation
	Slide 9: Data Binding – Two-way Data Binding
	Slide 10: Input example on HTML
	Slide 11: Data Binding – Two-way Data Binding
	Slide 12: Data Binding – Property Binding
	Slide 13: Angular – Data Binding Example
	Slide 14: Services
	Slide 15: Angular Example – Create Service
	Slide 16: Angular Example – Service Details
	Slide 17: Angular Example – Service Details
	Slide 18: Routing
	Slide 19: Routing
	Slide 21: Routing
	Slide 22: Routing
	Slide 23: Observables
	Slide 24: Observables
	Slide 25: Observers
	Slide 26: Observables – Simple Example
	Slide 27: Observables – For your project
	Slide 29: Angular Activity – Tour of Heroes – Part 2

